BMT 2021 ALGEBRA TEST SOLUTIONS NOVEMBER 20-21, 2021

1. Let « be a real number such that 22 —z +1 = 7 and 2 + z + 1 = 13. Compute the value of z*.
Answer: 81
Solution: Subtracting the first equation from the second yields 2x = 6, which implies x = 3.
Thus, 2* = 3* = .

2. Let f and g be linear functions such that f(¢(2021)) — g(f(2021)) = 20. Compute f(g(2022)) —
g(f(2022)). (Note: A function h is linear if h(z) = ax + b for all real numbers x.)
Answer: 20

Solution: For real numbers a, b, ¢, and d, let f(x) = ax + b, and let g(z) = cx + d. Observe
that

f(g(x)) — g(f(x)) = ad + b —bc — d,

so this value is constant for each x. Therefore, the answer is .

3. Let z be a solution to the equation |z [z + 2] 4+ 2] = 10. Compute the smallest C' such that for
any solution x, x < C. Here, |m| is defined as the greatest integer less than or equal to m. For
example, |3| =3 and [—4.25| = —5.

Answer: %

Solution: If |z |z + 2| + 2| = 10, then = |« + 2] 4+ 2 < 11, which means that z |z + 2| < 9.
To do some bounding, recognize that if x = 2, then z |z + 2| = 8. In addition, if z = 3, then
x |z + 2| = 15. Thus, for our inequality to be adhered, we must have 2 < x < 3, which means
that |#] = 2. Thus, our expression becomes 4z < 9 = z < %, so the smallest possible value

9
fCis|—|
0015

4. Let 6 be a real number such that 1 + sin 26 — (% sin 20)2 = 0. Compute the maximum value of
(1 +sin®)(1 + cosb).

Answer: 1

Solution: Let S = sinf + cosf and P = sinfcosf. We can see that the value which we wish
to compute is 1 + S + P. By sine properties, we see that

1 2
1 + sin 260 — <2sin20> =1+2sinfcosf — (sinfcosf)* =1+2P — P? =0,

so P =14 1/2. However, P can’t be greater than 1, since sine and cosine have an upper bound
of 1, so P =1 — /2. Expanding the original equation slightly differently yields

1+ 2sinfcosf — (sinf cos 0)? = sin? @ + cos? 6 + 2sin § cos § — (sin 6 cos 0)?
= (sin @ + cos )% — (sin 6 cos 6)*
=5*- P2
As a result, we see that 14+ 2P — P? = 52 — P2 s0 S = +(1 — v/2). We want to maximize

1+ 8 + P, and since P is fixed, this is equivalent to maximizing S. Thus, we get S = /2 — 1,
and hence, 1+ S+ P =14 (vV2 — 1) + (1 — v/2) =[1], which is our answer.
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5. Compute the sum of the real solutions to |x]|{zx} = 2020x. Here, |z | is defined as the greatest
integer less than or equal to z, and {2} =z — |z].

Answer: —ﬁ
Solution: Noting that x = {z} + [z], we can simplify the equation into |z|{z} = 2020[z] +
2020{z}. By Simon’s Favorite Factoring Trick, this factors to

(lz] — 2020)({z} — 2020) = 20207

However, we note that, because 0 < {z} < 1, we have —2020 < {z} — 2020 < —2019. Then

20202 2020
~5019 < |x]| — 2020 < —2020, so ~3019 < |z] < 0. However, |x]| is an integer, so it must

be either 0 or —1. If |z] = 0, then we find that = 0 is a solution. If |x| = —1, then we
can substitute this into the original expression to get —1(z + 1) = 2020z where solving yields

1 1
=———.Th h f th luti is ——— = ——
X 2021 us, the sum of the solutions is 2021 +0 2021

6. Let f be a real function such that for all z # 0,2 # 1,

f(:v)+f(—xi1>=422+f<1—i>.

Compute f (%) .

Answer: %

Solution: The main motivation behind the problem is that g(x) = 1— % cyclesas x — 1 — i —
% — x. Given this, recognize that plugging in « and 1 — % gives us the following equations

side by side:
1 1 9 3)°
swr ()1 (3) == ()

f<1_i>+f(x)_f<_w11> :4(1?;)2 - <2(;x1))2'

2
Adding the equations together gives 2f(z) = (%)2 + <%> and dividing by 2 yields f(x) =
1 (1)2 + (522 ’ Evaluating this at z = 3 t f (1) = 15
2 \ 2z 2(z—1) : g this at z = 3, we get f (3) = g [
7. Let 21, 22, . .., 22020 be the roots of the polynomial 22920 4 22019 4 ... 4 >+ 1. Compute
@
— ,2020°
— 11—z

Answer: 1010

Solution: First note that if z is a root of the given polynomial, then z is a root of

(z—1)(22020 4 22019 g2 b 1) = 22020 g,
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Hence, the values z; are the 2021st roots of unity except for 1. Because 2020 is relatively prime
to 2021, the values 212020 are simply a permutation of the values z;. That is to say,

2020 2020
P— :
2020 Z 1 :
e —
i=1 1 -2 i=1 v

Now observe that the solution set {z;} is contained entirely in the circle |z| = 1 and is symmetric
about the real axis. This means that the set {1 — z;} is contained entirely in the circle |z|] =
2cos(arg z) (i.e. the polar graph r = 2cos#) and is also symmetric about the real axis. Thus,

the set {1%%} is contained entirely in the set |z| = % sec(arg z), and again, it is symmetric about

the real axis. The set |z| = § sec(arg 2) is better identified as the set Re(z) = 3 (by multiplying
each side of the equation by cos(arg z)), which means that

2020

1 1
Regl_% = 2020 5 = 1010,

Further, since this set is symmetric about the real axis, the imaginary part of the sum is equal

to 0, so the answer is | 1010|.

8. Let f(w) = w? — rw? + sw — % denote a polynomial, where 72 = 8‘/5%10 s. The roots of f
correspond to the sides of a right triangle. Compute the smallest possible area of this triangle.
3
Answer: %

Solution: The roots must be in the form a,b, and va? + b2. Then a + b+ va? + b2 = r and
ab+ava?+b2+bVa2 +b2 =ab+ (a+b)Va2+b2 =5 Letz=+Va2+b% y=a+b, z=ab.

o o 2 9 o y2*$2
Thus, x+y = r and zy+2z = s. Note that 7422z = y*, s0 2 =

Now, let 72 = as, so that o = %7“0. Then (z + y)? = %(y2 + 2zy — 2?), or

, and thus 32422y — 22 = 2s.

(1+%>x2+(2—a)xy+ <1—%)y2:0.
Note that solutions must be in the form of 2 = ky, as any solution (z, y) will have a corresponding
solution (mx, my), where m is some real number. Hence, plugging x = ky and dividing by v,
we get

<1+%>k2+(2—a)k+<1—%>:0.

: : : 1244v/2 ) 1.2 4-8v2 2-4v2\ _
Now, plugging back in «, we get the equation <f) k* + (#> k+ ( = ) = 0 or,

simplifying out the 7’s in the denominator, (12 +4v/2)k? + (4 — 8v/2)k + (2 — 41/2) = 0. Solving
the quadratic for k, we obtain

8v2— a4 \/(8v2— 1) +4(12+4v2) (4v2 - 2)
-
2 (12 + 4v2)
_ 8V2— 44176 4+ 96v/2
B 2 (12 +4V2)
_8V2—44(12+4V?2)
o 2(12+4v2)
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10.

Note that since both x and y are positive, k¥ must also be positive, so we take the positive

solution. Hence, k = 8\/52_(411;52;%\/5) = 2(1122\51%) = % Hence we have z = % Now, by
AM-GM,
1 a? + b2 S ot by

Noalm 2 = 2 2
Thus, x > % with equality at a = b. Using Vieta’s on the condition given by the coefficient of
the product term, we get abvaZ + b2 = a3v2 = 42—\? = a= %. Thus, we have a = b = %,
3
2
so the area is %ab = \9[ .

Compute the sum of the positive integers n < 100 for which the polynomial 2™ + x 4+ 1 can be
written as the product of at least 2 polynomials of positive degree with integer coefficients.

Answer: 1648

Solution: If a polynomial p(z) is reducible, then it may be written in the form p(z) = f(z)g(z).
The polynomial p/(z) = x38P)p(1/z) is p but with the coefficients reversed. Suppose p and p’
do not share any roots. Then p'(x) = f/(z)g'(x), so pp’ = kk/, where k = £f¢' and k # +p,p’.
For p any polynomial, notice that the coefficient of 2™ of pp’ is the sum of the squares of the
coefficients of p. Substituting p(xz) = 2™ + = + 1, we find that the coefficient of 2™ in pp’ is 3,

indicating that k must be a sum of 3 monomials:
"+ 2" T+ )@ "+ + 1) =2 + 2?4 T 4 3" " a4 1L

Since the top coefficient of pp’ is 2?® and the bottom coefficient is 1, & must be of the form
(—=1)Prz™ + (—=1)P2x* 4+ (—1)Pt. Multiplying kk’ out, we get

ki = ((=1)"2" + (=1)P22” + (=1)"") ((-=1)"a" + (=1)P2a" " + (-=1)")
=g 4 (_1)p1+p2$2n—a 432"+ (_1)p1+p2xn+a + (_1)p1+pzxa (_1)p1+p2$n—a +1

so o2l 4 gntl ognTl g = (—1)PrtP2(gnte 4o g@ 4 "7 4 22779) Tt becomes clear that a
must equal 1 or n — 1 and py = p;.

Thus, if 2" + 2 + 1 and 2" + 2"~ + 1 share no roots, then they are irreducible. Conversely, if
they do share roots, then these polynomials will have a nontrivial common factor if n > 2 and
hence not be irreducible. Therefore, we notice that any roots of those two polynomials must be
a root of 2”72 — 1. Let w be such a root. Then w"” +w +1 =w?+w+1 =0, so w must be a
third root of unity and so n —2 =0 (mod 3). Thus, 2" +x + 1 is irreducible if and only if n = 2
or n % 2 (mod 3). Summing all desired n < 100 up, we get 16(5 + 98) = .

Given a positive integer n, define f,,(z) to be the number of square-free positive integers k such
that kz < n. Then, define v(n) as

o) = 3N fa () = 60 (i) + fn (77) -

i=1 j=1

Compute the largest positive integer 2 < n < 100 for which v(n) —v(n—1) is negative. (Note: A
square-free positive integer is a positive integer that is not divisible by the square of any prime.)

Answer: 60
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Solution: For some positive integer n, denote p(n) to be the number of distinct prime factors
of n. Note that p(1) = 0. Furthermore, denote F(z) to be the number of square-free positive
integers less than or equal to = for any nonnegative real number z. We first prove two lemmas.

a
x
Lemma 1. For any nonnegative real number x and positive integer a > |z, E F (—2> = |x].
i
=1

Proof. Note that because a square-free number k counted in F (Z%) must satisfy ki? < x, the
[=]
T
sum Z]: (—2> counts the number of ways a positive integer less than or equal to x can be
i
i=1

represented as the product of a square-free number and a square. Since for any such n, there
exists exactly one way to represent n = ki2, where k is square-free and i is a positive integer,
lz)
x

we achieve Z]: (72) = |z].
i=1

Then, note that for any i > [z] we have 4>

> i > z, meaning that 5 < 1. Since the

a [z]
. _ x T
smallest square-free number is 1, we have .7-"(1%) = 0, meaning E 1 F (2—2) = E 1 F (72) +
1= 1=

Za: F (%) = :f;]—" (?2) = |z], as desired. H

i=lx]+1

a
x
Lemma 2. For any nonnegative real number x and positive integer a > |x], Z]: (—) =

[z]
Z op(i)
=1

Proof. Similar to the proof of Lemma 1, we can note that a square-free number k& counted
[z]
x
in F (%) must satisfy ki < x, and therefore, the sum Z]—' (—) counts the number of ways
i
i=1
a positive integer less than or equal to z can be represented as the product of a square-free
number and a positive integer. For each positive integer n, consider pi'p5? - - -pzk to be the
prime factorization of n, where p; # p; for i # j, e; > 0 for all ¢, and k = p(n). Then, note that
the number of ways n can be represented as the product of a square-free number and a positive
integer is simply equal to the number of square-free factors of n. Because a square-free factor of

n is of the form n’ = pil pSQ e pzk, where ¢, <1 for all 4, there are exactly 2k — 9r(") square-free
[z] Ed

factors of n. Summing over all n < z, we obtain that Z]: <£> = Z 2P,

i=1 ! i=1

Then, note that for any i > [z], we have i > x, meaning ¥ < 1. Since the smallest square-free

a |z] a lz]
number is 1, we have F (7) = 0, meaning = F { + F E = F E =
W V ( ) ; ; (2) i:§+1 (z) ; (z)
=]
Z 2P() as desired. O
i=1
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Now, note that a square-free positive integer k is only counted by f,(x) if and only if k¥ < Z;
therefore, fn(z) = F (Z). Thus, we can rewrite v(n) as

Zan ) = 6£n(if) + fu(5?)

iiif<;>6f<3>+f<;>
:znif(;)_e;;;f( )
o33 ()
nz—ﬁiizp@)

_on? 63| 20
S
6303 20

i=1 dli

7'L2 i d
=6 (- Sw

i=1 di

by applying our two lemmas. Now, we can simply subtract v(n) — v(n — 1) to obtain

v(n)—v(n—1)=6 ﬁ_iZQP(d) 6 n—l Zzzp(d

i=1 dli i=1 dfi

2n —1
_ _ E (d)
=6 3 2p
dln

2n —1
It then suffices to find the maximum n > 2 such that Z2p(d) > n 3
dln

integer n, let its prime factorization be p{*pg? - --p*, where p; # p; for i # j, e; > 0 for all 1,
k

and k = p(n). We will then denote E(n) = H(2ei + 1) and claim that Z 2P(d) — E(n) for all
i=1 dln

For any positive

n.

k
Proof. Consider the generating function H (1 + 2p; + 2p22 +--+ 2pfi). Each factor
i=1

/
€k

! e} _ej
n:p1p2 -..pk
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of n is represented by exactly one term in the expansion. Furthermore, note that for every
prime factor p;, the coefficient of n’ is multiplied by 2 if p; divides n’ and is multiplied by
k

1 otherwise. Thus, the coefficient of n’ in the expansion of H (1 + 2p; + Qp? 4+ -+ pri) is

i=1
exactly 2P("")  Then, to compute the value of Z 2p(d), we want to find the sum of all coefficients
din
of the generating function, which is simply
k
14242+ +2]| =[] +1) = E(n),
———
=1 e; times =1
as desired. ]

Now, we want to find the maximum n such that E(n) > 221, Heuristically, E(n) is maximal

when n contains many prime factors. Simply by testing different distributions of prime factors,
we can see that the maximal possible value of n is 60.

Prime distribution E(n) max(n)
{6} 13 < 283=1 | Not possible
{5,1} 33 < 2%=1 [ Not possible
{5} 11 < 2'35_1 Not possible
{4,1} 27 < 288=1 [ Not possible
{3,2} 35 < % Not possible
{4} 9< % Not possible
(3,11 21 24
{2,1,1} 45 60

Since 2'6g_1 = 1%’ we do not need to test any value n for which E(n) < 39, meaning is the
maximum possible value of n, and we are done.

Remark. It is provable that 60 is the maximum value of n in general without imposing an
k

upper bound of 100. The inequality H(2€i +1) > pi'ps? - - - pi¥ limits n due to size reasons, as
i=1
the left-hand side is linear in e;, while the right-hand side is exponential.



