
BMT 2022 POWER ROUND NOVEMBER 5, 2022

Maximum score: 230 points.
Instructions: For this test, you work in teams to solve a multi-part, proof-oriented question. Problems that
use the words “compute,” “list,” or “draw” require only an answer; no explanation or proof is needed.
Unless otherwise stated, all other questions require explanation or proof. The problems are ordered
by content, not difficulty. The difficulties of the problems are generally indicated by the point values
assigned to them; it is to your advantage to attempt problems throughout the test. In your solution for
a given problem, you may cite the statements of earlier problems (but not later ones) without additional
justification, even if you haven’t solved them. Footnotes are not necessary to understand the contents of
the round. Do not discuss the contents of this Power Round until November 20.

1 Error Correcting Codes: A Tale of Bob and Alice (26 pts)

Consider a situation much too common in our modern world: a remote math contest participant, Alice,
wants to send her answers to Bob, a staff member of the math contest. There is a “channel” between them,
which we can think of as something that Alice can send data across as a bunch of characters. Bob can then
receive these characters. The set of possible characters has a name.

Definition 1.1. An alphabet is some set Σ of characters. Common alphabets include

• Σ2 = {0, 1}

• Σ10 = {0, 1, 2, . . . , 9}

• Σαβ = {A,B,C, . . . ,Z}

Before she can answer any questions, Alice has to send her name. Beforehand, the pair agree to use the
alphabet Σαβ . Alice types in the codeword

A L I C E

and sends it through the channel.
Now, Bob is receiving Alice’s answer. At the other end he sees:

A L E

Oh no! Our channel has “erased” the 3rd and 4th characters into underscores ( ’s are not in our alphabet).
This is a fact of life, as real-world channels often are not reliable enough to send every character perfectly.
Let’s say that Alice and Bob determine the following empirically: on any given transmission, we are guar-
anteed that at most two characters will be erased (but we don’t know beforehand which ones). Luckily,
Alice has a great idea that she has shared with Bob beforehand.
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Scheme 1.1. Just like how at a loud party, you have to repeat your message for people to get it,
Alice will duplicate her message 3 times, sending:

A L I C E A L I C E A L I C E

Now, Bob may receive
A L I E A L C E A L I C E

Then Bob does the following:

1. Bob receives a message of length n and divides n by 3 to get the length of the original word,
which we denote ℓ = n/3. In our example, this means he knows the message has length 5.

2. Bob places a marker at every ℓth letter. In our example he places markers in front of all 3 A’s.

(a) He compares all 3 of the letters at this position. He picks a letter that is not an underscore
(all the non-underscore letters are necessarily the same).

(b) He adds this letter to our draft message.

(c) He advances to the next position and repeat this ℓ times.

3. At the end, our “draft message” is the message we recover.

If we run our scheme on the example:

1. We see 3 A’s, so our first letter is A

2. We see 3 L’s, so our second letter is L

3. We see 2 I’s and 1 , so our third letter is I

4. We see 2 C’s and 1 , so our fourth letter is C

5. We see 3 E’s, so our fifth letter is E

This means Bob recovers A L I C E !
The scheme works only because at most 2 characters can be erased, so if you get to a position where 2 of
the regions have an underscore, the third region will still have the letter.

Question 1.1 (3 pts). Suppose now, instead of the channel “erasing” 2 characters, 2 characters
are “corrupted” into random characters that are in the alphabet. In the example above, Bob may
instead receive:

A L I X E A L Y C E A L I C E

Modify Scheme 1.1 such that step 2 (a) reads:

• He compares all 3 of the letters at this position, picking the one that is the “majority.” For
example, if the three letters are A, A, C, then Bob would pick A.

Does the scheme still work? If it does, give a proof. If not, give a counter-example.

Question 1.2 (4 pts). Suppose that we had s characters erased and Alice’s message has length n.
What is the minimum amount of times t that Alice needs to repeat her message to allow Scheme
1.1 to work (replacing 3 in the scheme with t)?

Let’s define what has happened formally.
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Definition 1.2. A set is a collection of elements with no duplicates. The following examples use
the sets from Definition 1.1.

• To denote the size of any set, we use | · | . For example,
∣∣Σαβ

∣∣ = 26.

• To denote an element being a member of a set, we use ∈. To denote an element not being a
member of a set, we use /∈. For example, 3 ∈ Σ10 but 3 /∈ Σ2.

• To denote subsets (i.e. every element of one set is also an element of the other), we use ⊆. For
example, Σ2 ⊆ Σ10.

• To denote sets of ordered tuples or sequences, we use ×. For example,

Σ10 × Σ2 = {(0, 0), (0, 1), (1, 0), (1, 1), . . . , (9, 0), (9, 1)}

• To denote using the × on a set with itself, we use exponents. For example,

Σ3
2 = Σ2 × Σ2 × Σ2 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), . . . , (1, 1, 0), (1, 1, 1)}

Definition 1.3. A code C of length n is some subset of Σn. Each element of C is called a codeword.
The elements of Σn are just called words.

Using the sets in Definition 1.1,

Question 1.3 (3 pts). Compute
∣∣Σm

2

∣∣ in terms of m.

Question 1.4 (4 pts). Compute the number of codes over alphabet Σ10 with codeword length n.

Question 1.5 (5 pts). Compute the number of codes over alphabet Σαβ with the following proper-
ties:

1. The length of each codeword is 10.

2. Each codeword has the substring ‘SUSBUS’ (where the letters are contiguous, in one block).

You may leave your answer in terms of exponents and binomial coefficients.

Definition 1.4. Consider an encoding setup with alphabet Σ and code C ⊆ Σn. The message m is
the meaningful information we want to send (like Alice’s name). From the time we have a message
to the time the person at the other end of the channel receives it, we undergo three different stages.

• Encoding - Encoding function E takes a message m and returns its corresponding codeword
E(m).

• Transmission - The message passes through a transmission channel T, which takes a code-
word c in C and returns a string c′ in Σn.

• Decoding - Decoding function D takes an element w of Σn (not necessarily a valid codeword)
and returns a corresponding message D(w).

This means for Scheme 1.1:

• C = the set of all words that are a message repeated three times.
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– So ′ALICEALICEALICE′ ∈ C but ′ALICEALICEBOBBY′ /∈ C.

• E(m) = (m,m,m) (our “codeword” is our original message repeated 3 times)

• T takes c and returns c with 2 random characters erased

• D(w) = the result of running Scheme 1.1 on w

Question 1.6 (2 pts). Give an expression for the final message received given an initial message m
which passes through the encoding, transmission, and decoding stages in Definition 1.4. For this
question, let T (c) denote the output of the transmission channel on some codeword c.

Question 1.7 (5 pts). Suppose that T does not change the codeword at all (it takes codeword c and
returns c) and we choose E and D such that our final message always matches our initial message
m. Prove that if x ̸= y, then E(x) ̸= E(y).

2 The Hamming Bound and Hamming Codes (58 pts)

2.1 Distances and the Hamming Bound

How can we compare the efficacy of schemes? Well, one answer is to look at a code’s distance, which tells
us how much wiggle room there is between codewords.

Definition 2.1. The Hamming distance between two words x ∈ Σn and y ∈ Σn is the number of
places at which they differ. We will denote this by δ(x, y).
For a code C, its distance d(C) is the minimum Hamming distance between any two distinct code-
words. Stated mathematically,

d(C) = min
c,c′∈C
c̸=c′

δ(c, c′)

In addition, the Hamming Ball of radius r centered at c, denoted Bc(r), is the set of all words that
are Hamming distance r or less from c (including c itself).

For example, if

x = A L I C E y = A L I X Y z = A D I Y X

then δ(x, y) = 2 and δ(y, z) = 3.
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Question 2.1 (5 pts).

Show that Hamming distance satisfies the triangle inequality: for any three words x, y, and z,

δ(x, y) + δ(y, z) ≥ δ(x, z).

Question 2.2 (3 pts).

The 0-1 distance between two words is:

δ0−1(x, y) =

{
0 x = y

1 x ̸= y

For any two messages x, y, which of the following is always true? Explain your reasoning.

(a) δ0−1(x, y) ≤ δ(x, y) (b) δ0−1(x, y) = δ(x, y)

(c) δ0−1(x, y) ≥ δ(x, y) (d) None of (a), (b), or (c)

Now for Alice and Bob’s code, what is d(C)? Well, since the message is repeated three times, you have
to change all the letters at the same position for the message to be part of C. This means any two distinct
codewords in C must differ by at least 3 characters. This tells us δ(c, c′) ≥ 3 for all c, c′ ∈ C such that
c ̸= c′, so d(C) ≥ 3 as well. On the other hand,

A L I C E A L I C E A L I C E and A L I C T A L I C T A L I C T

are code-words that differ in exactly three places, so the minimum distance over all code-words d(C)
must be at most 3. Thus, d(C) = 3.

Definition 2.2. An [n, k] code is a code of length n, message length k. If we know the distance d,
then we can also call it a [n, k, d] code.

So the repetition code (Scheme 1.1) we have studied is a [15, 5] or [15, 5, 3] code. Note that with this
distance, the code was able to fix 2 characters erased. This is no accident. In fact, we can show the
following:

Consider a code C with odd minimum distance d(C).

Question 2.3 (6 pts). Show that we can always correct erasures of up to d(C) − 1 characters. (In
other words, suppose we have a partially erased word c̃ that is the result of erasing up to d(C)− 1
characters from codeword c. Show that the only codeword such that erasing at most d(C) − 1
characters gives c̃ is c.) Explain why d(C)-character erasures cannot always be corrected.

Question 2.4 (7 pts). Show that we can always correct corruptions of up to d(C)−1
2 characters. (Hint:

Suppose a corrupted word c̃ is distance less than d(C)−1
2 from two distinct codewords c and c′. What

would this mean?)

The question remains: if all that matters is the distance, what is the best code for the job? One answer
may be the code with the most codewords, because then we can represent the most messages.
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Consider a code C with length n and d(C) = 3 over the alphabet Σ2 = {0, 1}.

Question 2.5 (2 pts). How many possible words are there of length n over the alphabet Σ2?

Question 2.6 (2 pts). Consider some c ∈ C. What is |Bc(1)|? (Here, Bc(1) denotes the Hamming
ball of radius 1 centered at c; see Definition 2.1.)

Question 2.7 (6 pts). Question 2.4 shows that we can fix a 1-character corruption, i.e. the balls of
radius 1 about every codeword in C will not overlap (the one corresponding to the codeword we
are decoding to). Use this to show:

|C| ≤ 2n

n+ 1
.

The bound we have derived is called the Hamming bound.

2.2 Hamming Codes

2.2.1 Motivating Hamming Codes

Due to the nice result from above, for the rest of this section, we will only consider binary codes.

Definition 2.3. A binary code is a code over the alphabet Σ2 = {0, 1}. Each 0 or 1 character is called
a bit.

We now have an idea of how efficient binary codes can be based on the Hamming bound: we know that
|C| ≤ 2n

n+1 . The bigger the size of the code, the more messages we can send. The obvious question to ask
here is:

Are there any codes which achieve the Hamming bound; i.e, codes with |C| = 2n

n+ 1
?

The answer turns out to be yes: a family of codes known as Hamming codes achieve the Hamming bound
of peak efficiency.
As done previously, let’s fix distance d = 3 for simplicity. Suppose we want to send a 4-bit message
(i.e. a length 4 binary message). The idea is that we need to introduce extra information in the form of
“parity check” bits that watch over 3 out of 4 message bits each. We see that to account for the data from
each of the message bits, we require 3 such parity bits1. A suitable operation to “account” for data, both
computationally and intuitively, turns out to be the exclusive or of two bits, denoted XOR.

Definition 2.4. For any two bits x and y, their XOR, denoted x ⊕ y, is simply x + y mod 2. For a
series of bits x1 . . . xn, y1 . . . yn, we xor their bits individually to get (x1 ⊕ y1) . . . (xn ⊕ yn).

For instance, 1101⊕ 1011 = 0110, and 10011⊕ 11001 = 01010.
Immediately one may see why computationally XOR makes sense: it is one of the simplest operations to
implement on a computer. Furthermore, take a look at the table of values for XOR:

a b a⊕ b

0 0 0
1 0 1
0 1 1
1 1 0

1There are 3 “unknown” bits, so we need 3 parity “equations” to get a unique solution to the unknowns.
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A result of 1 in the XOR captures the fact that there is exactly one error between a and b. This property
generalizes to XORs of multiple bits too: the value of XOR tells us something about errors. We will soon
make this more precise.

Question 2.8 (1 pt each). Compute the following:

a) 110011⊕ 101101

b) 10111011⊕ 10111100.

Question 2.9 (2 pts). Compute a such that a⊕ (1110111) = (1110110).

2.2.2 [7, 4] Hamming Code

With this inspiration at hand, we can define the [7, 4] Hamming Code.

Definition 2.5. Suppose you have a message (x1, x2, x3, x4) ∈ Σ4
2. The encoding into [7, 4] Ham-

ming codeword is:
E(x1, x2, x3, x4) = (x1, x2, x3, x4, p1, p2, p3)

where p1 = x2 ⊕ x3 ⊕ x4, p2 = x1 ⊕ x3 ⊕ x4, p3 = x1 ⊕ x2 ⊕ x4.

The first four bits here are the message bits, and the next three are parity bits, where each parity bit
encapsulates information about three message bits using XOR.

p1

x1 x2

x3

x4

p2 p3

.

Figure 1: Venn Diagram for [7, 4] Hamming Code. Each pi circle has three message bits within it that it will
XOR together; intersections show messages bits that are common between the parity bits. For example, p1
and p3 share x2 and x4 and all of the parity bits contain x4.

The goal is to now show that this code has distance 3.
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Question 2.10 (3 pts). Show that if x = (x1, . . . x7) and y = (y1, . . . y7) are two codewords, then
x+ y mod 2 is also a codeword under the Hamming code. This property is called “additivity.”

Question 2.11 (6 pts). Using additivity, prove that for the [7, 4] Hamming code, the minimum dis-
tance between any two codewords is the same as the minimum distance from any one nonzero
codeword to 0 = (0, 0, . . . , 0). That is, show

d(C) = min
c∈C,c̸=0

δ(c,0).

Hint: x− y = x+ y when adding mod 2.

The above question reduces our job to showing that the minimum distance of any nonzero codeword
from 0 is 3.
Let us set up a thought “experiment”. Consider the encoded message as seven different lights. A light is
on if its corresponding codeword bit is one, and is off otherwise. The lights all being off is the configura-
tion corresponding to the zero codeword. We can only “flip” switches corresponding to the message bits,
since the parity bits are derived from them.

Figure 2: Bulb representation of the message 1011 with Hamming code 1011010

Question 2.12 (6 pts). Show that at least three codeword lights turn on anytime one or two message
bits are flipped from the codeword 0 in the experiment.

Question 2.13 (4 pts). Prove that d(C) = 3.
Hint: First to show that d(C) ≥ 3, separate into cases of one bit flip, two flips, and three or more
flips from the codeword 0. Then to establish d(C) = 3, find a codeword with distance exactly 3
from 0.

Question 2.14 (4 pts). Prove that the [7, 4] Hamming code achieves the Hamming bound.

3 The Singleton Bound and Reed-Solomon Codes (78 pts)

3.1 The Singleton Bound

We now turn back to codes over general alphabets. Now that we’ve introduced a few codes, a natural
question to ask is if the codes are “optimal”, or if a “better” code can be found. One way to measure
optimality is by the trade-off between distance and dimension.
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Definition 3.1. Consider a code C with alphabet Σ. Then, the dimensiona of the code is log|Σ|(|C|).
aIt turns out that for a [n, k, d] code, this is the same as the message length k from before (though you need not

understand why for the purposes of the round).

Intuitively, this is the amount of information that the code can send with a single codeword. Our goal is
to maximize k while fixing n and d. In general, higher values of d will correspond to lower values of k, as
requiring codewords to be a larger distance from one another decreases the number of codewords we can
have. The Singleton Bound formalizes this intuition.

Consider a [n, k, d] code C over alphabet Σ.

Question 3.1 (5 pts). Let c1, c2 ∈ C be two distinct codewords. Prove that the (n − d + 1)-prefixes
of c1 and c2 are unique; that is, c1 and c2 do not share the same first n− d+ 1 characters.

Question 3.2 (5 pts). Prove the Singleton Bounda, which states that k ≤ n− d+ 1.

aThe Singleton Bound is not related to singleton sets; rather, it is named after Richard Singleton, a mathematician
who proved this bound in 1964.

3.2 Reed-Solomon Codes

Reed-Solomon Codes are a class of codes widely used in communication that achieve the Singleton
Bound, that is, we have k = n − d + 1. The main idea of these codes is to treat our message as num-
bers modulo some prime p. We encode a message as values of a polynomial with integer coefficients, also
taken modulo p.

Definition 3.2. A polynomial with integer coefficients P (x) of degree D for a variable x is an
expression written in the form P (x) =

∑D
i=0 aix

i, where a0, . . . , aD are integers and aD ̸= 0. We
often denote P (x) by P . We define the zero polynomial P (x) = 0 to have degree −1.

Definition 3.3. We have two natural operations on polynomials: addition and multiplication.
Given polynomials P (x) =

∑D1
i=0 aix

i, and Q(x) =
∑D2

i=0 aix
i, we have (P + Q)(x) =

∑D1
i=0 aix

i +∑D2
i=0 aix

i and (PQ)(x) =
Ä∑D1

i=0 aix
i
ä
·
Ä∑D2

i=0 aix
i
ä

Definition 3.4. Polynomials A and B with integer coefficients are equivalent modulo p if A−B =
p · C, where C is another polynomial with integer coefficients.

Question 3.3 (4 pts). Show that two polynomials with integer coefficients are equivalent modulo p
if and only if for any i, the coefficients of xi for each of the two polynomials are equivalent modulo
p.
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Definition 3.5. Using the previous problem, we define P (x) as a polynomial of degree D modulo
p as P (x) =

∑D
i=0 aix

i, where a0, . . . , aD ∈ {0, 1, . . . , p − 1} and aD ̸= 0. Again, we often denote
P (x) by P . We can evaluate P at values t ∈ {0, 1, . . . , p − 1}, where the value of P (t) is taken
modulo p (i.e. in the range {0, 1, . . . , p− 1}). When polynomials modulo p are added or multiplied
together, we add or multiply them as usual and then take each of the coefficients modulo p.

Definition 3.6. An integer t ∈ {0, 1, . . . , p− 1} is a root of P (t) modulo p if P (t) = 0.

Definition 3.7. A polynomial P modulo p divides a polynomial Q modulo p if there exists a poly-
nomial D modulo p such that Q = P ·D.

We will state the following theorem, which we will not prove, but you can use in the round:

Theorem 3.1. For any two nonzero polynomials A(x) and B(x) modulo p, there exist polynomials
Q(x) and R(x) modulo p such that A(x) = B(x)Q(x) +R(x) and degR < degB.

For the rest of this section, “polynomial” will refer to a polynomial with integer coefficients taken
modulo p, and “roots” of polynomial refer to integers in the set {0, . . . , p− 1}.

First, let’s prove some key properties of polynomials. In the next 4 problems, no facts about polynomi-
als may be used other than the definitions and theorem stated above in Section 3.2 and any previous
problems.

Consider an integer D > 0.

Question 3.4 (3 pts). Find a polynomial P (x) of degree D with distinct roots x1, . . . , xD.

Question 3.5 (3 pts). Show that for any two nonzero polynomials P (x) and Q(x), degPQ = degP+
degQ.

Question 3.6 (5 pts). Show that if t is a root of polynomial P (x), then x− t divides P (x).

Question 3.7 (5 pts). Prove that a degree D ≥ 0 polynomial cannot have more than D distinct roots.

Question 3.8 (6 pts). Prove that if we have distinct integers x1, . . . , xD, and (not necessarily distinct)
integers y1, . . . , yD, there is at most 1 unique degree D− 1 polynomial P (x) modulo a prime p such
that P (xi) = yi for all 1 ≤ i ≤ D.

Question 3.9 (8 pts). Reed-Solomon codes require working modulo a prime p to work, because the
property in the previous problem only holds for prime numbers. Show that Question 3.8 is false
for any composite p.

We showed above that there is at most 1 unique degree D − 1 polynomial modulo p passing through
D points. In fact, such a polynomial always exists and can be easily found given the points using a
computer2. For the rest of the round, you can use without proof that given D points, you can construct
such a polynomial (just say “use a computer”).
Using these results, we have a new scheme. We choose a prime number p and make a code over the
alphabet Σp = {0, 1, 2, . . . , p− 1} as follows.

2We will not prove this in this Power Round, but it can be done using a technique known as Lagrange interpolation.
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Scheme 3.1. Suppose Alice has a length k message m1m2 · · ·mk that she wants to send, where
m1, . . . ,mk are elements of Σp.

• She finds a polynomial P taken modulo p such that P (i) = mi for all 1 ≤ i ≤ k. Note that
degree of such a polynomial is k − 1.

• Alice chooses a number a ≥ k. Alice sends the a values P (1), P (2), . . . , P (a) along the
channel to Bob.

• Bob receives a values, which we denote as r1, · · · , ra, where ri is the result of transmitting
P (i) over the channel. He can determine the polynomial P (x) uniquely from these values
using a computer.

• Bob plugs in P (1), P (2), . . . , P (k) to recover the message.

However, suppose we have a noisy channel, so s characters are erased. In other words, out of the
P (1), . . . , P (a) that Alice sends, Bob only receives b = a − s values he can read. How can we ensure
that Bob can actually determine the polynomial? Well, since we need k points to uniquely determine a
degree n− 1 polynomial, we must have b ≥ k points received, or a ≥ k + s points sent.

Question 3.10 (3 pts). Suppose Alice wishes to send the message (1, 10, 3) to Bob such that he will
be able to correct up to s = 2 erasures. Alice and Bob work modulo p = 11. Find the encoded
message that Alice sends. Assume that Alice sends the minimum number of values needed for Bob
to always be able to decode her message.

Now suppose that instead of characters being erased, we instead have corruptions, where some characters
are replaced with other characters. Compared to erasures, Alice will need to send more bits to represent
the message; if up to s bits are corrupted, sending k + s values of polynomial P (x) is insufficient to
guarantee that we can correctly identify the original polynomial.

Question 3.11 (3 pts). Find an example demonstrating the previous sentence for k = 2 and s = 1.

However, even if Alice sends more characters to Bob to represent her message, how can Bob decode it?
Interpolation will not work, as he will be interpolating a polynomial through corrupted points, which do
not lie on the actual polynomial we want to send. To do this, we first define the following:

Definition 3.8. If Alice sends a message m and Bob receives it with characters at positions
e1, e2, . . . , es corrupted, then the error-locating polynomial is defined as E(x) = (x − e1)(x −
e2) · · · (x − es). For example, if Alice sends the message (19, 13, 20) to Bob, and Bob receives the
message (2, 13, 20), then E(x) = x− 1.

Bob does not know the error-locating polynomial, as otherwise, he knows the corrupted bits and can
simply interpolate the polynomial through the remaining points. However, the error-locating polynomial
has a useful property that allows us to decode a corrupted message:

Question 3.12 (5 pts). Recall that ri is the result of sending P (i) over the channel, which Bob re-
ceives. Prove that P (i)E(i) = riE(i) for all 1 ≤ i ≤ a.

Let Q(x) = P (x)E(x). If we have a = k + 2s, the previous problem shows that Q(i) = riE(i) for all
1 ≤ i ≤ k + 2s.
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Question 3.13 (9 pts). Show that we can determine the polynomials Q and E from the k+2s points
received. Hint: Consider the degrees of the polynomials defined above.

Question 3.14 (2 pts). Given Q and E, how can we recover P ?

Question 3.15 (4 pts). Suppose Alice sends a length-3 message (modulo 29) to Bob, but knowing
that 1 corruption occurs, she sends an additional 2 characters. Bob receives the encoded message
(2, 6, 12, 17, 1). What is the message that Alice sent?

The process described above is known as the Berlekamp-Welch algorithm, named after Elwyn Berlekamp
and Lloyd Welch, who published this method in 1983. Finally, we prove that Reed-Solomon codes are
optimal with regards to the tradeoff between codeword length and distance.

Question 3.16 (8 pts). Prove that Reed-Solomon codes which correct for s corruptions achieve the
Singleton Bound.
Hint: Prove that its minimum distance is 2s+ 1.

4 More Bounds on ECCs (68 pts)

The Singleton Bound proved in the previous section shows that k cannot be too large for a given d. We
can ask the opposite question: again given a fixed d, can we construct a code with a given k? The Gilbert-
Varshamov Bound is a lower bound on k such that a code of dimension k always exists.

Question 4.1 (4 pts). Find the number of binary codewords of length n with a Hamming distance
of less than or equal to r from the length-n 0 codeword, (0, . . . , 0). You can write your answer as a
summation.

Question 4.2 (1 pts). Let A be the answer to the previous question. Find the number of length n
codewords with a Hamming distance of less than or equal to r from some given length n codeword
x. Express your answer in terms of A.

Question 4.3 (7 pts). Describe a method of finding a binary code C with length n and distance d
such that |C| ≥ 2n

A , where A is the answer to Question 4.1 (letting r = d). This bound on the size of
the code is known as the Gilbert-Vashamov Bound.

The Gilbert-Varshamov Bound is currently the strongest known result for binary codes (in fact, for any
q−ary code with q < 493) and it is currently an open question as to whether it is tight or if codes with
higher rate can be constructed. It can be shown, however, that the GV Bound is only meaningful when
d
n ≤ 1

2 , and it tells us nothing when d
n > 1

2 . Intuitively, for this case, we can see that if a code C has high
distance, it will contain very few codewords. Thus, a more natural question to ask here is whether we can
find an upper bound, ideally much tighter than the Singleton Bound, on the number of codewords such
a code can contain. The Plotkin Bound below is such a bound.

3For q ≥ 49, a type of code known as Algebraic Geometric Codes exceeds the GV Bound.
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Question 4.4 (16 pts). Prove the Plotkin Bound, which states that for a binary code C of length n
and distance d such that d > n

2 we have |C| ≤ 2d
2d−n .

Hint: Let ri denote the number of codewords in C with a 1 in position i. Bound the quantity∑
x,y∈C,x̸=y

δ(x, y).

Up to this point, we have dealt with codes where we can receive a corrupted message and correctly de-
code it. However, this is often very difficult, so one way to simplify this problem is by weakening our
constraints to allow us to output more than one decoded message (a “list of messages”), and consider our-
selves successful as long as one of the outputted messages is the correct message. This technique is called
list decoding. Clearly, we need to limit the number of outputted messages, as we can technically list de-
code any codeword by simply outputting the entire code C. The Johnson Bound tackles this problem by
upper bounding the number of codewords in a given radius.

Definition 4.1. The Johnson radius of a binary code C of length n and distance d ≤ n
2 is J(n, d) =

n−
√

n(n−2d)

2 .

Question 4.5 (25 pts). (Johnson Bound) Show that for a binary code C of length n and distance
d ≤ n

2 , there are at most 2n codewords in any Hamming ball of radius J(n, d)− 1.
Hint: Let ri denote the number of codewords in the Hamming ball with a 1 in position i. Bound an
appropriate quantity and use Cauchy-Schwarz.

Using the Johnson bound, we can prove the Elias-Bassalygo Bound, which is a stronger upper bound on
the size of codes than the Hamming Bound.

Question 4.6 (6 pts). (Lemma) Given a binary code C of length n, distance d ≤ n
2 , and some

arbitrary 0 ≤ r ≤ n, show that there exists a Hamming ball of radius r with at least |C|·A
2n codewords,

where A is the answer to Question 4.2.

Question 4.7 (9 pts). (Elias-Bassalygo Bound) Show that a code of length n and distance d ≤ n
2

satisfies |C| ≤ n2n+1

( n+1
J(n,d)−1)

.
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